Identification

Title

Effects of atmospheric aerosols on heat stress over South Asia

Abstract

The recent trend in global mean temperature is expected to increase the frequency, duration, and intensity of heat waves and heat stress all around the world, especially over the Indian subcontinent. To investigate the plausible mechanisms and implications of meteorological feedback of aerosol forcing on heat stress over South Asia, simulations using a regional climate model (RegCM4) coupled with aerosols were carried out from 2015 to 2019. Generally, extreme heat days are observed mainly over the central and western Indo-Gangetic plains (IGPs) during May. The two heat-humidity indices, wet-bulb temperature (WBT) and heat index (HI), showed moderate effects due to aerosol forcing despite the high aerosol loading during the pre-monsoon. The inclusion of aerosols leads to surface cooling (a reduction in maximum surface temperature), with the highest impact over western India (WI) and the IGP. However, this surface cooling due to aerosols is compensated by an increase in near-surface relative humidity (RH), leading to an increase in WBT and HI. This compensating effect of RH on WBT and HI is greater in WI than that in eastern India. Regional heterogeneity in aerosol-induced changes in heat stress has a strong dependence on land-atmosphere interactions. This study clearly shows that aerosol-induced changes in RH play a decisive role in the assessment of heat stress, which answers the link between the prevalence of high heat stress conditions despite high aerosol loading (surface cooling) over the Indian region.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7kd235s

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:12:01.300278

Metadata language

eng; USA