Identification

Title

Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems

Abstract

In this study, idealized numerical simulations are used to identify the processes responsible for initiating, organizing, and maintaining quasi-stationary convective systems that produce locally extreme rainfall amounts. Of particular interest are those convective systems that have been observed to occur near mesoscale convective vortices (MCVs) and other midlevel circulations. To simulate the lifting associated with such circulations, a low-level momentum forcing is applied to an initial state that is representative of observed extreme rain events. The initial vertical wind profile includes a sharp reversal of the vertical wind shear with height, indicative of observed low-level jets. Deep moist convection initiates within the region of mesoscale lifting, and the resulting convective system replicates many of the features of observed systems. The low-level thermodynamic environment is nearly saturated, which is not conducive to the production of a strong surface cold pool; yet the convection quickly organizes into a back-building line. It is shown that a nearly stationary convectively generated low-level gravity wave is responsible for the linear organization, which continues for several hours. New convective cells repeatedly form on the southwest end of the line and move to the northeast, resulting in large local rainfall amounts. In the later stages of the simulated convective system, a cold pool does develop, but its interaction with the strong reverse shear at low levels is not optimized for the maintenance of deep convection along its edge. A series of sensitivity experiments shows some of the effects of hydrometeor evaporation and melting, planetary rotation, and the imposed mesoscale forcing.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7m909ph

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2009-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:08:57.347333

Metadata language

eng; USA