Identification

Title

A numerical evaluation of the impact of operational ground-based glaciogenic cloud seeding on precipitation over the Wind River Range, Wyoming

Abstract

This study evaluates an operational glaciogenic cloud-seeding program using ground-based generators of silver iodide (AgI), with a total of 190 seeded storms over 10 cold seasons, using the Weather Research and Forecasting Weather Modification (WRF-WxMod) scheme at 900-m grid spacing. This study examines both the quantitative change in precipitation and the ambient and cloud conditions impacting seeding efficacy. An ensemble approach is used, with differ-ing model boundary conditions, ice nucleation physics, concentrations of cloud condensation nuclei, and boundary layer schemes. This is intended to provide an envelope of uncertainty of natural clouds and seeding impacts. The simulations are validated against radiosonde, snow gauge, and microwave radiometer observations, and the seeding impact is inferred from simulations with/without AgI seeding. The seeding-induced precipitation enhancement ("yield") varies greatly be-tween storms. A small portion of the cases produces the majority of the yield. Overall, the precipitation in the target area (the Wind River Range in Wyoming) increased by 1.10% 6 0.13% in the 10 years of operational seeding. This rather low fractional increase is related to the frequent seeding at unsuitable times, primarily because of low-level flow blocking. The flow and cloud structure for select cases are examined to provide better insight into the variability of yield. Cases with un-blocked surface flow and abundant cloud liquid water tend to be the most productive. The technique presented here can be readily adapted to evaluate the seeding impact of other long-term glaciogenic seeding operations and to improve their operational efficiency.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7r78k64

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:40:04.612571

Metadata language

eng; USA