Verifying supercellular rotation in a convection-permitting ensemble forecasting system with radar-derived rotation track data
The utility of radar-derived rotation track data for the verification of supercell thunderstorm forecasts was quantified through this study. The forecasts were generated using a convection-permitting model ensemble, and supercell occurrence was diagnosed via updraft helicity and low-level vertical vorticity. Forecasts of four severe convective weather events were considered. Probability fields were computed from the model data, and forecast skill was quantified using rotation track data, storm report data, and a neighborhood-based verification approach. The ability to adjust the rotation track threshold for verification purposes was shown to be an advantage of the rotation track data over the storms reports, because the reports are inherently binary observations whereas the rotation tracks are based on values of Doppler velocity shear. These results encourage further pursuit of incorporating observed rotation track data in the forecasting and verification of severe weather events.
document
http://n2t.net/ark:/85065/d7st7rnt
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-04-01T00:00:00Z
Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:25:35.384203