Identification

Title

Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet

Abstract

The relative skill of two vertical-profile-of-reflectivity (VPR) correction techniques for daily accumulations on a selected dataset and a real-time dataset has been verified. The first technique (C1) adjusts the 1-h rainfall amounts already derived on a Cartesian CAPPI map at an altitude of 1.5 km in a "one step" procedure using the range-dependent space - time-averaged VPR over the 1-h interval. The C2 technique corrects the nonconvective polar reflectivity measurements of each 5-min radar cycle that are also centered at a height of 1.5 km according to a VPR that is similarly derived but over a shorter time interval. The results emphasize the importance of applying a VPR correction scheme--in particular, in a climatic regime in which most of the liquid precipitation falls from stratiform echoes. The crucial importance of the choice of datasets is also underlined, causing differences in the final assessment that may be greater than those between the various algorithms. Both techniques perform well with selected events of low bright band and thus with the greatest potential for improvement--in particular, when the bias is removed in a post facto analysis. However, when the VPR algorithm is tested in a real-time environment consisting of less strong or higher brightband situations and faces a variety of day-to-day precipitation, the improvement is substantially lower. RMS errors are reduced only from 61% to 48% in contrast with the reduction from 117% to 43% seen with the smaller sample of selected events. This is because other sources of error--in particular, the variability in the radar reflectivity-rainfall rate (Z-R) relationship--are often of the same magnitude as the VPR errors. An example is provided that shows how the bias from an improper Z-R relationship can reduce the true skill of a real-time VPR correction scheme.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cv4j26

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:39.529926

Metadata language

eng; USA