Identification

Title

A constant pressure upper boundary formulation for models employing height-based vertical coordinates

Abstract

For the numerical simulation of atmospheric flows that extend as high as the thermosphere, it is more appropriate to represent the upper boundary of the model domain as a material surface at constant pressure rather than one characterized by a rigid lid. Consequently, in adapting the Model for Prediction Across Scales (MPAS) for geospace applications, a modification of the height-based vertical coordinate is presented that permits the coordinate surfaces at upper levels to transition toward a constant pressure surface at the model's upper boundary. This modification is conceptually similar to a terrain-following coordinate at low levels, but now modifies the coordinate surfaces at upper levels to conform to a constant pressure surface at the model top. Since this surface is evolving in time, the height of the upper boundary is adaptively adjusted to follow a designated constant pressure upper surface. This is accomplished by applying the hydrostatic equation to estimate the change in height along the boundary that is consistent with the vertical pressure gradient at the model top. This alteration in the vertical coordinate requires only minor modifications and little additional computational expense to the original height-based time-invariant terrain-following vertical coordinate employed in MPAS. The viability of this modified vertical coordinate formulation has been verified in a 2D prototype of MPAS for an idealized case of upper-level diurnal heating. Significance Statement Most atmospheric numerical models that use a height-based vertical coordinate employ a rigid lid at the top of the model domain. While a rigid lid works well for applications in the troposphere and stratosphere, it is not well suited for applications extending into the thermosphere where significant vertical expansion/contraction occurs due to deep heating/cooling of the atmosphere. This paper develops and tests a simple modification to the height-based coordinate formulation that allows the height of the upper boundary to adaptively follow a constant pressure surface. This added flexibility in the treatment of the upper domain boundary for height-based models may be particularly beneficial in facilitating their transition to a deep atmosphere configuration without significant retooling of the model numerics.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7057krd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:18.368398

Metadata language

eng; USA