Identification

Title

Model-space localization in serial ensemble filters

Abstract

Ensemble-based data assimilation systems typically use covariance localization to dampen spurious correlations associated with sampling error while increasing the rank of the covariance estimate. Variational methods use model-space localization, in which localization is applied to ensemble estimates of covariances between model variables and is based on distances between those variables, while ensemble filters apply observation-space localization to estimates of model-observation covariances, based on distances between model variables and observations. It has been shown that for nonlocal observations, such as satellite radiances, model-space localization can be superior. This paper demonstrates a new method for performing model-space localization in serial ensemble filters using the linearized observation operators (or Jacobians). Results of radiance-only assimilation in a global forecast system show the benefit of using model-space localization relative to observation-space localization. The serial ensemble square root filter with vertical model-space localization gives results similar to those of the Ensemble Variational system (without outer loops or extra balance constraints) while increasing the runtime compared to the filter with observation-space localization by a factor between 2 and 8, depending on how sparse the Jacobian matrices are. The results are also similar to another approach to model-space localization in ensemble filters: ensemble Kalman filter with modulated ensembles.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7348md9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-05-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:29:08.702043

Metadata language

eng; USA