Identification

Title

Urban land expansion amplifies surface warming more in dry climate than in wet climate: A global sensitivity study

Abstract

Urbanization changes Earth's climate by contributing to the buildup of atmospheric greenhouse gases and altering surface biophysical properties. In climate models, the greenhouse aspect is prescribed with urbanization and emission trajectories embedded in socioeconomic pathways (SSPs). However, the biophysical aspect is omitted because no models currently simulate spatially explicit urban land transition. Urban land is typically warmer than adjacent natural land due to a large urban‐versus‐natural land contrast in biophysical properties. The lack of biophysical representation of urbanization in climate models raises the possibility that model projection of future warming may be biased low, especially in areas with intense urban land expansion. Here, we conduct a global sensitivity study using a dynamic urban scheme in the Community Earth System Model to quantify the biophysical effect of urban land expansion under the SSP5‐RCP8.5 scenario. Constant urban radiative, thermal, and morphological properties are used. We find that the biophysical effect depends on land aridity. In climate zones where surface evaporation is water‐limited, the biophysical effect causes a significant increase in air temperature (0.28 ± 0.19 K; mean ± one standard deviation of nine ensemble pairs; p  < 0.01) in areas where urban expansion exceeds 5% by 2070. The majority of this warming signal is attributed to an indirect effect associated with atmospheric and land feedback, with the direct effect of land replacement playing a minor role. These atmospheric feedback processes, including solar brightening, soil drying, and stomatal closure, act to enhance the warming initiated by surface property changes of urban land replacement.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d75x2fbm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-02-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:13.251284

Metadata language

eng; USA