Identification

Title

The response of mesospheric H2O and CO to solar irradiance variability in models and observations

Abstract

Water vapor (H2O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO), being formed by CO2 photolysis, is suitable as a dynamical tracer. In the mesosphere, both H2O and CO are sensitive to solar irradiance (SI) variability because of their destruction/production by solar radiation. This enables us to analyze the solar signal in both models and observed data. Here, we evaluate the mesospheric H2O and CO response to solar irradiance variability using the Chemistry-Climate Model Initiative (CCMI-1) simulations and satellite observations. We analyzed the results of four CCMI models (CMAM, EMAC-L90MA, SOCOLv3, and CESM1-WACCM 3.5) operated in CCMI reference simulation REF-C1SD in specified dynamics mode, covering the period from 1984-2017. Multiple linear regression analyses show a pronounced and statistically robust response of H2O and CO to solar irradiance variability and to the annual and semiannual cycles. For periods with available satellite data, we compared the simulated solar signal against satellite observations, namely the GOZCARDS composite for 1992-2017 for H2O and Aura/MLS measurements for 2005-2017 for CO. The model results generally agree with observations and reproduce an expected negative and positive correlation for H2O and CO, respectively, with solar irradiance. However, the magnitude of the response and patterns of the solar signal varies among the considered models, indicating differences in the applied chemical reaction and dynamical schemes, including the representation of photolyzes. We suggest that there is no dominating thermospheric influence of solar irradiance in CO, as reported in previous studies, because the response to solar variability is comparable with observations in both low-top and high-top models. We stress the importance of this work for improving our understanding of the current ability and limitations of state-of-the-art models to simulate a solar signal in the chemistry and dynamics of the middle atmosphere.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kw5kc7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:31.848485

Metadata language

eng; USA