Identification

Title

Lagged effects regulate the inter-annual variability of the tropical carbon balance

Abstract

Inter-annual variations in the tropical land carbon (C) balance are a dominant component of the global atmospheric CO2 growth rate. Currently, the lack of quantitative knowledge on processes controlling net tropical ecosystem C balance on inter-annual timescales inhibits accurate understanding and projections of land-atmosphere C exchanges. In particular, uncertainty on the relative contribution of ecosystem C fluxes attributable to concurrent forcing anomalies (concurrent effects) and those attributable to the continuing influence of past phenomena (lagged effects) stifles efforts to explicitly understand the integrated sensitivity of a tropical ecosystem to climatic variability. Here we present a conceptual framework - applicable in principle to any land biosphere model - to explicitly quantify net biospheric exchange (NBE) as the sum of anomaly-induced concurrent changes and climatology-induced lagged changes to terrestrial ecosystem C states (NBE = NBECON + NBELAG). We apply this framework to an observation-constrained analysis of the 2001-2015 tropical C balance: we use a data-model integration approach (CARbon DAta-MOdel fraMe-work - CARDAMOM) to merge satellite-retrieved landsurface C observations (leaf area, biomass, solar-induced fluorescence), soil C inventory data and satellite-based atmospheric inversion estimates of CO2 and CO fluxes to produce a data-constrained analysis of the 2001-2015 tropical C cycle. We find that the inter-annual variability of both concurrent and lagged effects substantially contributes to the 2001-2015 NBE inter-annual variability throughout 20012015 across the tropics (NBECON IAV = 80% of total NBE IAV, r = 0.76; NBELAG IAV = 64% of NBE IAV, r = 0.61), and the prominence of NBELAG IAV persists across both wet and dry tropical ecosystems. The magnitude of lagged effect variations on NBE across the tropics is largely attributable to lagged effects on net primary productivity (NPP; NPPLAG IAV 113% of NBELAG IAV, r = -0.93, p value < 0.05), which emerge due to the dependence of NPP on inter-annual variations in foliar C and plant-available H2O states. We conclude that concurrent and lagged effects need to be explicitly and jointly resolved to retrieve an accurate understanding of the processes regulating the present-day and future trajectory of the terrestrial land C sink.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7736v8j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-12-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:15.997280

Metadata language

eng; USA