Identification

Title

Application of the NCAR FastEddy® microscale model to a lake breeze front

Abstract

This study investigates how urban environments influence boundary layer processes during the passage of a Great Salt Lake breeze using a multi-scale modeling system, NCAR's WRF-Coupled GPU-accelerated FastEddy (R) (FE) model. Motivated by the need for sub-10 m scale decision support tools for uncrewed aerial systems (UAS), the FE model was used to simulate turbulent flows around urban structures at 5 m horizontal resolution with a 9 km x 9 km domain centered on the Salt Lake City International Airport. FE was one-way nested within a 1 km resolution Weather Research and Forecasting (WRF) domain spanning 400 x 400 km. Focused on the late morning lake breeze on 3 June 2022, an FE simulation was compared with WRF outputs and validated using surface and radar observations. The FE simulation revealed low sensible heat flux and cool near-surface temperatures, attributed to a relatively low specification of thermal roughness suitable for previously tested FE applications. Lake breeze characteristics were minimally affected, as FE effectively resolved interactions between the lake breeze and urban-induced turbulent eddies, providing insights into fine-scale boundary layer processes. FE's GPU acceleration ensured efficient simulations, underscoring its potential for aiding decision support in UAS operations in complex urban environments.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d77s7t18

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-07-06T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:25.837676

Metadata language

eng; USA