A revised conceptual model of the tropical marine boundary layer. Part I: Statistical characterization of the variability inherent in the wintertime trade wind regime over the western tropical Atlantic
This paper investigates wintertime tropical marine boundary layer (TMBL) statistical characteristics over the western North Atlantic using the complete set of island-launched soundings from the Rain in Cumulus over the Ocean (RICO) experiment. The soundings are subdivided into undisturbed and disturbed classifications using two discriminators: 1) dates chosen by Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies (GCSS) investigators to construct the mean RICO sounding and 2) daily average rain rates. A wide range of relative humidity (RH) values was observed between the surface and 8.0 km. At 2.0 km, half the RH values were within 56%-89%; at 4.0 km, half were within 13%-61%. The rain-rate method of separating disturbed and undisturbed soundings appears more meaningful than the GCSS method. The median RH for disturbed conditions using the rain-rate method showed moister conditions from the surface to 8.0 km, with maximum RH differences of 30%-40%. Moist air generally extended higher on disturbed than undisturbed days. Based on equivalent potential temperature, wind direction, and RH analyses, the most common altitude marking the TMBL top was about 4.0 km. Temperature inversions (over both 50- and 350-m intervals) were observed at every altitude above 1.2 km; there were no dominant inversion heights and most of the inversions were weak. Wind direction analyses indicated that winds within the TMBL originated from more tropical latitudes on disturbed days. The analyses herein suggest that the RICO profile used to initialize many model simulations of this environment represents only a small subset of the broad range of possible conditions characterizing the wintertime trades.
document
http://n2t.net/ark:/85065/d7765g6r
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-10-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:26:35.660185