Identification

Title

A Compressible High-ORder Unstructured Spectral-difference code for stratified convection in rotating spherical shells

Abstract

We present a novel and powerful Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating thermal convection and related fluid dynamics in the interiors of stars and planets. The computational geometries are treated as rotating spherical shells filled with stratified gas. The hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM) on unstructured meshes. The computational stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS demonstrates excellent parallel performance for all test cases reported in this paper, scaling up to 12 000 cores on the Yellowstone High-Performance Computing cluster at NCAR. The code is verified by defining two benchmark cases for global convection in Jupiter and the Sun. CHORUS results are compared with results from the ASH code and good agreement is found. The CHORUS code creates new opportunities for simulating such varied phenomena as multi-scale solar convection, core convection, and convection in rapidly-rotating, oblate stars.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7xk8h4d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

NOTICE: This is the author's version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T22:40:40.531113

Metadata language

eng; USA