Identification

Title

Numerical simulations of quiet sun magnetism: On the contribution from a small-scale dynamo

Abstract

We present a series of radiative MHD simulations addressing the origin and distribution of the mixed polarity magnetic field in the solar photosphere. To this end, we consider numerical simulations that cover the uppermost 2-6 Mm of the solar convection zone and we explore scales ranging from 2 km to 25 Mm. We study how the strength and distribution of the magnetic field in the photosphere and subsurface layers depend on resolution, domain size, and boundary conditions. We find that 50% of the magnetic energy at the τ = 1 level comes from fields with the less than 500 G strength and that 50% of the energy resides on scales smaller than about 100 km. While the probability distribution functions are essentially independent of resolution, properly describing the spectral energy distribution requires grid spacings of 8 km or smaller. The formation of flux concentrations in the photosphere exceeding 1 kG requires a mean vertical field strength greater than 30-40 G at τ = 1. The filling factor of kG flux concentrations increases with overall domain size as the magnetic field becomes organized by larger, longer-lived flow structures. A solution with a mean vertical field strength of around 85 G at τ = 1 requires a subsurface rms field strength increasing with depth at the same rate as the equipartition field strength. We consider this an upper limit for the quiet Sun field strength, which implies that most of the convection zone is magnetized close to the equipartition. We discuss these findings in view of recent high-resolution spectropolarimetric observations of quiet Sun magnetism.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d79k4c6j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-07-10T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this article was published by the Institute of Physics on behalf of the American Astronomical Society. Copyright 2014 the American Astronomical Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:07:13.045578

Metadata language

eng; USA