Identification

Title

Real-time forecast of dense fog events over Delhi: The performance of the WRF model during the WiFEX field campaign

Abstract

A Winter Fog Experiment (WiFEX) was conducted to study the genesis of fog formation between winters 2016–17 and 2017–18 at Indira Gandhi International Airport (IGIA), Delhi, India. To support the WiFEX field campaign, the Weather Research and Forecasting (WRF) Model was used to produce real-time forecasts at 2-km horizontal grid spacing. This paper summarizes the performance of the model forecasts for 43 very dense fog episodes (visibility < 200 m) and preliminary evaluation of the model against the observations. Similarly, near-surface liquid water content (LWC) from models and continuous visibility observations are used as a metric for model evaluation. Results show that the skill score is relatively promising for the hit rate with a value of 0.78, whereas the false alarm rate (0.19) and missing rate (0.32) are quite low. This indicates that the model has reasonable predictive accuracy, and the performance of the real-time forecast is better for both dense fog events and no-fog events. For success cases, the model accurately captured the near-surface meteorological conditions, particularly the low-level moisture, wind fields, and temperature inversion. In contrast, for failed cases, the WRF Model shows large error in near-surface relative humidity and temperature compared to the observations, although it captures temperature inversions reasonably well. Our results also suggest that the model is able to capture the variability in fog onset for consecutive fog events. Errors in near-surface variables during failed cases are found to be affected by the errors in the initial conditions taken from the Indian Institute of Tropical Meteorology Global Forecasting System (IITM-GFS) spectral model forecast. Further evaluation of the operational forecasts for dense fog cases indicates that the error in predicting fog onset stage is relatively large (mean error of 4 h) compared to the dissipation stage.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7mk6h8n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:07:31.893963

Metadata language

eng; USA