Identification

Title

Liquid–Ice mass partition in tropical maritime convective clouds

Abstract

The liquid ice mass partitioning in tropical maritime convective clouds is studied using data collected by the National Center for Atmospheric Research C-130 research aircraft during the Ice in Clouds Experiment Tropical project. The clouds investigated by the C-130 in this study generally contained weak to moderate updrafts. The liquid water content (LWC) is calculated using a combination of hot-wire and imaging probes. The total condensed water content (CWC) is measured by a counterfiow virtual impactor. The ice water content (IWC) is calculated as CWC minus LWC. Taking into account potential significant measurement uncertainties, the liquid fraction [i.e., LWC/(LWC + IWC)] between 0 and -15 degrees C appears to decrease by a factor of about 3 in updrafts near (<500 m) cloud top and a factor of 2 in updrafts far below (>500 m) cloud top. The decrease in liquid fraction as a function of temperature is also correlated with cloud life cycle. In dissipating clouds, ice dominates in all temperature ranges. A comparison between this study and two parameterizations shows that at different geographic locations the liquid fraction in convective clouds differs. Because of the sampling bias and the limitations of instruments, more measurements, especially with more advanced instruments, are needed in the future.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70p11s4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:53:22.720774

Metadata language

eng; USA