Identification

Title

The relation between nocturnal MCS evolution and its outflow boundaries in the Stable Boundary Layer: An observational study of the 15 July 2015 MCS in PECAN

Abstract

The vertical structures of a leading outflow boundary ahead of a continental nocturnal MCS and of the upstream environment are examined in order to answer the question of whether this vertical structure affects new cell formation and thus MCS maintenance. The MCS in question, observed on 15 July 2015 as part of the Plains Elevated Convection at Night (PECAN) experiment, formed near sunset as a surface-based, density current-driven system. As the night progressed and a stable boundary layer developed, convection became elevated, multiple fine lines became apparent (indicative of an undular bore), and convection increasingly lagged the outflow boundary. Bore-like boundaries became most apparent where the outflow boundary was oriented more perpendicular to the low-level jet, and the lower troposphere was more susceptible to wave trapping. This case study uses a rich array of radiosonde data, as well as airborne Raman lidar and ground-based interferometer data, to profile the temperature and humidity in the lower troposphere. In all soundings, the lifting of air in the residual mixed layer over a depth corresponding to the Raman lidar observed vertical displacement reduced CIN to near zero and enabled deep convection, even though most unstable CAPE steadily decreased during the evolution of this MCS. Both types of outflow boundaries (density currents and bores) initiated convection that helped maintain the MCS. In the case of density currents, cold pool depth and wind shear determined new cell formation and thus MCS maintenance. For bore-like boundaries, bore transformation and propagation were additional factors that determined whether convection initiated and whether it contributed to the MCS or remained separated.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gx4ffh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:13.663979

Metadata language

eng; USA