The value of initial condition large ensembles to robust adaptation decision‐making
The origins of uncertainty in climate projections have major consequences for the scientific and policy decisions made in response to climate change. Internal climate variability, for example, is an inherent uncertainty in the climate system that is undersampled by the multimodel ensembles used in most climate impacts research. Because of this, decision makers are left with the question of whether the range of climate projections across models is due to structural model choices, thus requiring more scientific investment to constrain, or instead is a set of equally plausible outcomes consistent with the same warming world. Similarly, many questions faced by scientists require a clear separation of model uncertainty and that arising from internal variability. With this as motivation and the renewed attention to large ensembles given planning for Phase 7 of the Coupled Model Intercomparison Project (CMIP7), we illustrate the scientific and policy value of the attribution and quantification of uncertainty from initial condition large ensembles, particularly when analyzed in conjunction with multimodel ensembles. We focus on how large ensembles can support regional-scale robust adaptation decision-making in ways multimodel ensembles alone cannot. We also acknowledge several recently identified problems associated with large ensembles, namely, that they are (1) resource intensive, (2) redundant, and (3) biased. Despite these challenges, we show, using examples from hydroclimate, how large ensembles provide unique information for the scientific and policy communities and can be analyzed appropriately for regional-scale climate impacts research to help inform risk management in a warming world.
document
http://n2t.net/ark:/85065/d7jd513w
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-10-29T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:32:32.050102