Identification

Title

Comparison of cumulus parameterizations and entrainment using domain-mean wind divergence in a regional model

Abstract

Several different cumulus parameterizations are compared in a 10-day regional model simulation over the tropical Americas in northern summer. A simple bulk diagnostic test is devised, comparing the model's preferred domain-mean wind divergence profile with “observed” drivergence. The latter is obtained by a line integral of the normal wind component at the model's outer boundary, from the ECMWF reanalysis data used as lateral boundary conditions. The former is obtained from a line integral one grid point in from the boundary, a perimeter that encloses almost exactly the same region. Even though the model fields near the boundary are strongly nudged toward the ECMWF values, the difference is distinct, and indicative of systematic errors in the model's heating field throughout the interior of the domain. Heating reflects the effects of the convection scheme, both direct and indirect (e.g., through its impact on resolved condensation). A useful axis along which to characterize schemes appears to be overactive versus underactive. Underactive convective schemes tend to produce too little low-level convergence and upper-level divergence, while overactive schemes produce too much. This categorization is also reflected in rainfall fields, as overactive schemes produce widespread light convective rain while underactive schemes produce sparse occasional storms. For example, the Kain–Fritsch scheme is overactive with its default entraining-plume radius of 1500 m, a value optimized for midlatitudes over land. A value of 750 m makes the regional divergence magnitude about right, but makes the upper-tropospheric outflow altitude too low, illustrating a classic dilemma of entraining-plume models of convection. Schemes with other conceptual structures give widely varying divergence errors. The largest errors are found with the Anthes–Kuo scheme, while the smallest errors are found with the Betts–Miller–Janjic scheme, which has no consistent divergence bias over time. Diagnosis of other North American monsoon simulations supports the general underactive/ overactive characterization, but shows that the best scheme and parameters may depend on weather regime.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qj7hwp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2004-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2004 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:44:49.885986

Metadata language

eng; USA