Identification

Title

Statistical dependence of EMIC wave scattering on wave and plasma parameters

Abstract

A recent statistical study (Qin et al., 2018, https://doi-org.cuucar.idm.oclc.org/10.1029/2018JA025419) has suggested that not all electromagnetic ion cyclotron (EMIC) waves can scatter relativistic electrons. However, knowledge of the factors that influence the EMIC wave scattering efficiency is still limited in observations. In our study, we perform 6 years of analysis of data from 2013 to 2018, with relativistic electron precipitation (REP) observed by POES and EMIC wave observations from Van Allen Probes. The coincidence occurrence rate between EMIC waves and relativistic electron precipitation events is about 34%. Proportion of different bands of EMIC wave events that are associated with REP is as follows: H+ band and He+ band waves occurring simultaneously >H+ band >He+ band occurrence, same as in our previous study (Qin et al., 2018, https://doi-org.cuucar.idm.oclc.org/10.1029/2018JA025419). It is also found that the coincidence occurrence rate of EMIC wave events and REP events increases with respect to increased background plasma density, with increases in the ratio of plasma frequency to local gyrofrequency, increasing EMIC wave power and when the wave frequency approaches the gyrofrequency. The dependence on background electron density is stronger than the dependence on the ratio of plasma frequency to gyrofrequency. The coincidence occurrence rate decreases as the magnetic field increases between 120 and 270 nT, consistent with a previous study. These results are critical for better understanding and predicting the REP into the upper atmosphere due to EMIC waves.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dr2zpr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:35:20.021595

Metadata language

eng; USA