Identification

Title

Learning about parameter and structural uncertainty in carbon cycle models

Abstract

Uncertainty in the response of the global carbon cycle to anthropogenic emissions plays a key role in assessments of potential future climate change and response strategies. We investigate how fast this uncertainty might change as additional data on the global carbon budget becomes available over the twenty-first century. Using a simple global carbon cycle model and focusing on both parameter and structural uncertainty in the terrestrial sink, we find that additional global data leads to substantial learning (i.e., changes in uncertainty) under some conditions but not others. If the model structure is assumed known and only parameter uncertainty is considered, learning is rather limited if observational errors in the data or the magnitude of unexplained natural variability are not reduced. Learning about parameter values can be substantial, however, when errors in data or unexplained variability are reduced. We also find that, on the one hand, uncertainty in the model structure has a much bigger impact on uncertainty in projections of future atmospheric composition than does parameter uncertainty. But on the other, it is also possible to learn more about the model structure than the parameter values, even from global budget data that does not improve over time in terms of its associated errors. As an example, we illustrate how one standard model structure, if incorrect, could become inconsistent with global budget data within 40 years. The rate of learning in this analysis is affected by the choice of a relatively simple carbon cycle model, the use of observations only of global emissions and atmospheric concentration, and the assumption of perfect autocorrelation in observational errors and variability. Future work could usefully improve the approach in each of these areas.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7np24kz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by Springer. Copyright 2008, Springer Netherlands

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:39:12.030480

Metadata language

eng; USA