Identification

Title

Impact of Biomass Burning Aerosols on the Diurnal Cycle of Convective Clouds and Precipitation over a Tropical Island

Abstract

A coupled weather-aerosol model is used to study the effect of biomass burning aerosols on deep convection over the Borneo Island and surrounding oceans. Simulations are performed at the convection-permitting scale (4 km) for 40 days during the boreal summer and include interactive fire emissions and the aerosol effect on radiative and microphysical processes. Intense burning occurs daily in the southern part of the island, and smoke propagates northward to regions of deep convection. The model captures well the observed diurnal cycle of precipitation and high cloud cover. Cloud microphysics and radiative aerosol impacts are considered separately. Modifications of the cloud microphysics by smoke aerosols reinforce deep convection near the central Borneo mountainous region. This reinforced convection is due to reduced shallow precipitation in the afternoon that leads to a warm planetary boundary layer anomaly at sunset enhancing deep convection at night. Aerosol absorptive properties strongly affect local and synoptic atmospheric responses. The radiative processes of moderately absorbing aerosols tend to reduce deep convection over most regions due to local surface cooling and atmosphere warming that increase the static stability. For more absorbing aerosols, however, the impact is reversed with increased nighttime convection over most regions. This is partly related to changes in the vertical water vapor divergence profiles that decrease the convergence toward Borneo for moderately absorbing aerosols and increase it for more absorbing ones. These changes in the synoptic circulation due to large-scale aerosol perturbations are as important as local processes to explain the observed rainfall perturbation patterns.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cz39rx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-01-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 The author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:16:21.403917

Metadata language

eng; USA