Identification

Title

Modeling the hydrologic influence of subsurface tile drainage using the National Water Model

Abstract

Subsurface tile drainage (TD) is a dominant agriculture water management practice in the United States (US) to enhance crop production in poorly drained soils. Assessments of field-level or watershed-level (<50 km(2)) hydrologic impacts of TD are becoming common; however, a major gap exists in our understanding of regional (>105 km(2)) impacts of TD on hydrology. The National Water Model (NWM) is a distributed 1-km resolution hydrological model designed to provide accurate streamflow forecasts at 2.7 million reaches across the US. The current NWM lacks TD representation which adds considerable uncertainty to streamflow forecasts in heavily tile-drained areas. In this study, we quantify the performance of the NWM with a newly incorporated tile-drainage scheme over the heavily tile-drained Midwestern US. Employing a TD scheme enhanced the uncalibrated NWM performance by about 20-50% of the fully calibrated NWM (Calib). The calibrated NWM with tile drainage (CalibTD) showed enhanced accuracy with higher event hit rates and lower false alarm rates than Calib. CalibTD showed better performance in high-flow estimations as TD increased streamflow peaks (14%), volume (2.3%), and baseflow (11%). Regional water balance analysis indicated that TD significantly reduced surface runoff (-7% to -29%), groundwater recharge (-43% to -50%), evapotranspiration (-7% to -13%), and soil moisture content (-2% to -3%). However, TD significantly increased soil profile lateral flow (27.7%) along with infiltration and soil water storage potential. Overall, our findings highlight the importance of incorporating the TD process into the operational configuration of the NWM.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7mp56x3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:18:09.702696

Metadata language

eng; USA