Identification

Title

Increased glacier melt enhances future extreme floods in the southern Tibetan Plateau

Abstract

Mountainous areas are of special hydrological concern because topography and atmospheric conditions can result in large and sudden floods, posing serious risks to water-related safety in neighbouring countries. The Yarlung Zangbo (YZ) River basin is the largest river basin on the Tibetan Plateau (TP), but how floods will discharge in this basin and how the role of glacier melt in floods will change throughout the 21st-century under shared socioeconomic pathways scenarios (SSP2-4.5 and SSP5-8.5) remain unclear. Here, we comprehensively address this scientific question based on a well-validated large-scale glacier-hydrology model. The results indicate that extreme floods was projected to increase in the YZ basin, and was mainly reflected in increased duration (4- 10 d per decade) and intensity (153- 985 m 3 s- 1 per decade). Glacier runoff was projected to increase (2- 30 mm per decade) throughout the 21st-century, but there was also a noticeable decrease or deceleration in glacier runoff growth in the late first half of the century under the SSP2-4.5, and in the latter half of the century under the SSP5-8.5. Glacier melt was projected to enhance the duration (12%- 23%) and intensity (15%- 21%) of extreme floods under both SSPs, which would aggravate the impact of future floods on the socioeconomics of the YZ basin. This effect was gradually overwhelmed by precipitation-induced floods from glacier areas to YZ outlet. This study takes the YZ basin as a projection framework example to help enrich the understanding of future flood hazards in basins affected by rainfall- or meltwater across the TP, and to help policy-makers and water managers develop future plans.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7k93csh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:34.340241

Metadata language

eng; USA