Identification

Title

Terrestrial contribution to the heterogeneity in hydrological changes under global warming

Abstract

This study investigates a physical basis for heterogeneity in hydrological changes, which suggests a greater detectability in wet than dry regions. Wet regions are those where atmospheric demand is less than precipitation (energy limited), and dry regions are those where atmospheric demand is greater than precipitation (water limited). Long-term streamflow trends in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models at global scales show geographically heterogeneous detectability of hydrological changes. We apply the Budyko framework and state-of-the-art climate model data from CMIP5 to quantify the sensitivity and detectability of terrestrial hydrological changes. The Budyko framework quantifies the partitioning of precipitation into evapotranspiration and runoff components. We find that the terrestrial hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited rather than water limited. This additional source (the terrestrial part) contributes to 30–40% greater detectability in energy-limited regions. We also quantified the contribution of changes in the catchment efficiency parameter that oppose the effects of increasing evaporative demand in global warming scenarios. Incorporating changes to the catchment efficiency parameter in the Budyko framework reduces dry biases in global runoff change projections by 88% in the 21st century.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77w6dst

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:01:19.270000

Metadata language

eng; USA