Identification

Title

Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system

Abstract

Historical reanalyses that span more than a century are needed for a wide range of studies, from understanding large-scale climate trends to diagnosing the impacts of individual historical extreme weather events. The Twentieth Century Reanalysis (20CR) Project is an effort to fill this need. It is supported by the National Oceanic and Atmospheric Administration (NOAA), the Cooperative Institute for Research in Environmental Sciences (CIRES), and the U.S. Department of Energy (DOE), and is facilitated by collaboration with the international Atmospheric Circulation Reconstructions over the Earth initiative. 20CR is the first ensemble of sub-daily global atmospheric conditions spanning over 100 years. This provides a best estimate of the weather at any given place and time as well as an estimate of its confidence and uncertainty. While extremely useful, version 2c of this dataset (20CRv2c) has several significant issues, including inaccurate estimates of confidence and a global sea level pressure bias in the mid-19th century. These and other issues can reduce its effectiveness for studies at many spatial and temporal scales. Therefore, the 20CR system underwent a series of developments to generate a significant new version of the reanalysis. The version 3 system (NOAA-CIRES-DOE 20CRv3) uses upgraded data assimilation methods including an adaptive inflation algorithm; has a newer, higher-resolution forecast model that specifies dry air mass; and assimilates a larger set of pressure observations. These changes have improved the ensemble-based estimates of confidence, removed spin-up effects in the precipitation fields, and diminished the sea-level pressure bias. Other improvements include more accurate representations of storm intensity, smaller errors, and large-scale reductions in model bias. The 20CRv3 system is comprehensively reviewed, focusing on the aspects that have ameliorated issues in 20CRv2c. Despite the many improvements, some challenges remain, including a systematic bias in tropical precipitation and time-varying biases in southern high-latitude pressure fields.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x92fg1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:29.632654

Metadata language

eng; USA