Identification

Title

Convective organization in evolving large-scale forcing represented by a highly truncated numerical archetype

Abstract

Considered as a prognostic generalization of mass-flux-based convection parameterization, the highly truncated nonhydrostatic anelastic model with segmentally constant approximation (NAM-SCA) is tested with time-evolving large-scale forcing. The 20-day GATE Phase III period is taken as a major data source. The main advantage of the NAM-SCA parameterization is consistency with subgrid-scale dynamics as represented by the nonhydrostatic anelastic formulation. The approach explicitly generates important dynamical structures of convection (e.g., mesoscale circulations, cold pools) spontaneously without further tuning or treatment as additional subcomponents. As with other convection parameterization, the numerical simulation of the precipitation rate, the apparent heat source, and the apparent moisture sink is straightforward and reasonably insensitive to the numerical procedures. However, convective momentum transport by organized convection turns out to be difficult even with NAM-SCA, especially for the inherently three-dimensional shear-parallel systems. Modifications of NAM-SCA regarding the large-scale forcing formulation improves the mesoscale momentum transport. Simulation of the full 120-day TOGA COARE period demonstrates the performance of NAM-SCA in different meteorological conditions and its capacity to operate over a longer time period.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j67krq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:19.561448

Metadata language

eng; USA