Linearity of climate response to increases in black carbon aerosols
The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4–SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semidirect effects. CAM4-SOM was forced with 0, 1×, 2×, 5×, and 10× an estimate of the present day concentration of BC while maintaining the estimated present day global spatial and vertical distribution. The top-of-atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semidirect effect for the 1 × BC experiment is positive but becomes increasingly negative for higher BC concentrations. The global-average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K W⁻¹ m² when the semidirect effects are accounted for and 0.22 K W⁻¹ m² with only the direct effects considered. Global-average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4% W−¹ m². The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the intertropical convergence zone in the simulations at a rate of 4° PW⁻¹. Global-average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the southern tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.
document
http://n2t.net/ark:/85065/d79z95sc
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-10-15T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:26:36.130042