Identification

Title

Evaluating the detectability of methane point sources from satellite observing systems using microscale modeling

Abstract

This study evaluates the efficacy of current satellite observing systems to detect methane point sources from typical oil and gas production (O&G) facilities using a novel very high-resolution methane concentration dataset generated using a microscale model. Transport and dispersion of typical methane emissions from seven well pads were simulated and the column enhancements for pseudo satellite pixel sizes of 3, 1, and 0.05 km were examined every second of the 2-h simulations (7200 realizations). The detectability of plumes increased with a pixel resolution, but two orders of magnitude change in emission rates at the surface results only in about 0.4%, 1.6%, and 47.8% enhancement in the pseudo-satellite retrieved methane column at 3, 1, and 0.05 km, respectively. Average methane emission rates estimated by employing the integrated mass enhancement (IME) method to column enhancements at 0.05 km showed an underestimation of the mean emissions by 0.2–6.4%. We show that IME derived satellite-based inversions of methane emissions work well for large persistent emission sources (e.g., super emitters), however, the method is ill-suited to resolve short-term emission fluctuations (< 20 min) in typical well site emissions due to the limitations in satellite detection limits, precision, overpass timing, and pixel resolution.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7v69pck

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-10-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:34.784430

Metadata language

eng; USA