An ensemble-based four-dimensional variational data assimilation scheme: Part I: Technical formulation and preliminary test
Applying a flow-dependent background error covariance (B matrix) in variational data assimilation has been a topic of interest among researchers in recent years. In this paper, an ensemble-based four-dimensional variational (En4DVAR) algorithm, designed by the authors, is presented that uses a flow-dependent background error covariance matrix constructed by ensemble forecasts and performs 4DVAR optimization to produce a balanced analysis. A great advantage of this En4DVAR design over standard 4DVAR methods is that the tangent linear and adjoint models can be avoided in its formulation and implementation. In addition, it can be easily incorporated into variational data assimilation systems that are already in use at operational centers and among the research community. A one-dimensional shallow water model was used for preliminary tests of the En4DVAR scheme. Compared with standard 4DVAR, the En4DVAR converges well and can produce results that are as good as those with 4DVAR but with far less computation cost in its minimization. In addition, a comparison of the results from En4DVAR with those from other data assimilation schemes [e.g., 3DVAR and ensemble Kalman filter (EnKF)] is made. The results show that the En4DVAR yields an analysis that is comparable to the widely used variational or ensemble data assimilation schemes and can be a promising approach for real-time applications. In addition, experiments were carried out to test the sensitivities of EnKF and En4DVAR, whose background error covariance is estimated from the same ensemble forecasts. The experiments indicated that En4DVAR obtained reasonably sound analysis even with larger observation error, higher observation frequency, and more unbalanced background field.
document
https://n2t.org/ark:/85065/d70v8d0r
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-09-01T00:00:00Z
Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T15:56:22.030820