Influence of local water vapor analysis uncertainty on ensemble forecasts of tropical cyclogenesis using Hurricane Irma (2017) as a testbed
Tropical cyclone formation is known to require abundant water vapor in the lower to middle troposphere within the incipient disturbance. In this study, we assess the impacts of local water vapor analysis uncertainty on the predictability of the formation of Hurricane Irma (2017). To this end, we reduce the magnitude of the incipient disturbance's water vapor perturbations obtained from an ensemble-based data assimilation system that constrained moisture by assimilating all-sky infrared and microwave radiances. Five-day ensemble forecasts are initialized two days before genesis using each set of modified analysis perturbations. Growth of convective differences and intensity uncertainty are evaluated for each ensemble forecast. We observe that when initializing an ensemble forecast with only moisture uncertainty within the incipient disturbance, the resulting intensity uncertainty at every lead time exceeds half that of an ensemble containing initial perturbations to all variables throughout the domain. Although ensembles with different initial moisture uncertainty amplitudes reveal a similar pathway to genesis, uncertainty in genesis timing varies substantially across ensembles since moister members exhibit earlier spinup of the low-level vortex. These differences in genesis timing are traced back to the first 6-12 h of integration, when differences in the position and intensity of mesoscale convective systems across ensemble members develop more quickly with greater initial moisture uncertainty. In addition, the rapid growth of intensity uncertainty may be greatly modulated by the diurnal cycle. Ultimately, this study underscores the importance of targeting the incipient disturbance with high spatiotemporal water vapor observations for ingestion into data assimilation systems.
document
https://n2t.org/ark:/85065/d7mw2nc7
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-06-01T00:00:00Z
Copyright 2024 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T20:01:29.921898