Identification

Title

Assimilation of radar reflectivity via a full-hydrometeor assimilation scheme based on the WSM6 microphysics scheme in WRF 4D-Var

Abstract

The microphysical parameterization scheme employed in four-dimensional variational data assimilation (4DVar) plays an important role in the assimilation of humidity and cloud-sensitive observations. In this study, a newly developed full-hydrometeor assimilation scheme, integrating warm-rain and cold-cloud processes, has been implemented in the Weather Research and Forecasting (WRF) 4D-Var system. This scheme is based on the WRF single-moment 6-class microphysics scheme (WSM6). Its primary objective is to directly assimilate radar reflectivity observations, with the goal of evaluating its effects on model initialization and subsequent forecasting performance. Four assimilation experiments were conducted to assess the performance of the full-hydrometeor assimilation scheme against the warm-rain assimilation scheme. These experiments also investigated reflectivity assimilation using both indirect and direct methods. We found that the nonlinearity of the radar operator in the two direct reflectivity assimilation experiments requires more iterations for cost function reduction than in the indirect assimilation method. The hydrometeor fields were reasonably analyzed using the full-hydrometeor assimilation scheme, particularly improving the simulation of ice-phase hydrometeors and reflectivity above the melting layer. The assimilation of radar reflectivity led to improvements in short-term (0-3 h) precipitation forecasting with the full-hydrometeor assimilation scheme. Assimilation experiments across multiple case studies reaffirmed that assimilating radar reflectivity observations with the full-hydrometeor assimilation scheme accelerated model spinup and yielded enhancements in 0-3-h total accumulate precipitation forecasts for a range of precipitation thresholds.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7cc14w1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:38.702787

Metadata language

eng; USA