Magnetic cycles and meridional circulation in global models of solar convection
We review recent insights into the dynamics of the solar convection zone obtained from global numerical simulations, focusing on two recent developments in particular. The first is quasi-cyclic magnetic activity in a long-duration dynamo simulation. Although mean fields comprise only a few percent of the total magnetic energy they exhibit remarkable order, with multiple polarity reversals and systematic variability on time scales of 6-15 years. The second development concerns the maintenance of the meridional circulation. Recent high-resolution simulations have captured the subtle nonlinear dynamical balances with more fidelity than previous, more laminar models, yielding more coherent circulation patterns. These patterns are dominated by a single cell in each hemisphere, with poleward and equatorward flow in the upper and lower convection zone respectively. We briefly address the implications of and future of these modeling efforts.
document
http://n2t.net/ark:/85065/d7w66ngp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-01-01T00:00:00Z
Copyright 2011 Cambridge University Press.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:17:39.396129