Identification

Title

Effect of planetary rotation on oceanic surface boundary layer turbulence

Abstract

A large-eddy simulation (LES) model is configured to investigate the effect of the horizontal (northward) component of Earth's rotation fh on upper-ocean atmosphere. oare the largest in the tropics and decrease with increasing latitudes. The focus is on the variability of the fh effect with latitude/hemisphere in the presence of surface gravity waves and when capped by a stable stratification beneath the surface layer. When fh is included, the mean flow, turbulence, and vertical mixing depend on the wind direction. The value and effect of fh are the largest in the tropics and decrease with increasing latitudes. The variability in turbulent flows to wind direction is different at different latitudes and in opposite hemispheres. When limited by stable stratification, the variability in turbulence intensity to wind direction reduces, but the entrainment rate changes with wind direction. In wave-driven Langmuir turbulence, the variability in mean current to wind direction is reduced, but the variability of turbulence to wind direction is evident. When there is wind-following swell, the variability in the mean current to wind direction is further reduced. When there is strong wind-opposing swell so that the total wave forcing is opposite to the wind, the variability in the mean current to wind direction is reduced, but the variability of turbulence to wind direction is enhanced, compared to in Ekman turbulence. The profiles of eddy viscosity, including its shape and its value, show a strong wind direction dependence for both stratified wind-driven and wave-driven Langmuir turbulence. Our study demonstrates that wind direction is an important parameter to upper-ocean mixing, though it is overlooked in existing ocean models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7z89g8c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:21:47.005287

Metadata language

eng; USA