Identification

Title

Prospects for seasonal prediction of summertime trans-Arctic sea ice path

Abstract

The continuing decline of the summertime sea ice cover has reduced the sea ice path that must be traversed to Arctic destinations and through the Arctic between the Atlantic and Pacific Oceans, stimulating interest in trans-Arctic Ocean routes. Seasonal prediction of the sea ice cover along these routes could support the increasing summertime ship traffic taking advantage of recent low ice conditions. We introduce the minimum Arctic sea ice path (MIP) between Atlantic and Pacific Oceans as a shipping-relevant metric that is amenable to multidecadal hindcast evaluation. We show, using 1992-2017 retrospective predictions, that bias correction is necessary for the GFDL Seamless System for Prediction and Earth System Research (SPEAR) forecast system to improve upon damped persistence seasonal forecasts of summertime daily MIP between the Atlantic and Pacific Oceans both east and west of Greenland, corresponding roughly to the Northeast and Northwest Passages. Without bias correction, only the Northwest Passage MIP forecasts have lower error than a damped persistence forecast. Using the forecast ensemble spread to estimate a lower bound on forecast error, we find large opportunities for forecast error reduction, especially at lead times of less than 2 months. Most of the potential improvement remains after linear removal of climatological and trend biases, suggesting that significant error reduction might come from improved initialization and simulation of subannual variability. Using a different passive microwave sea ice dataset for calculating error than was used for data assimilation increases the raw forecast errors but not the trend anomaly forecast errors.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dn48ww

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:11.532293

Metadata language

eng; USA