GLOBathy, the global lakes bathymetry dataset
Waterbodies (natural lakes and reservoirs) are a critical part of a watershed's ecological and hydrological balance, and in many cases dictate the downstream river flows either through natural attenuation or through managed controls. Investigating waterbody dynamics relies primarily on understanding their morphology and geophysical characteristics that are primarily defined by bathymetry. Bathymetric conditions define stage-storage relationships and circulation/transport processes in waterbodies. Yet many studies oversimplify these mechanisms due to unavailability of the bathymetric data. We developed a novel GLObal Bathymetric (GLOBathy) dataset of 1.4+ million waterbodies to align with the well-established global dataset, HydroLAKES. GLOBathy uses a GIS-based framework to generate bathymetric maps based on the waterbody maximum depth estimates and HydroLAKES geometric/geophysical attributes of the waterbodies. The maximum depth estimates are validated at 1,503 waterbodies, making use of several observed data sources. We also provide estimations for head-Area-Volume (h-A-V) relationships of the HydroLAKES waterbodies, driven from the bathymetric maps of the GLOBathy dataset. The h-A-V relationships provide essential information for water balance and hydrological studies of global waterbody systems.
document
http://n2t.net/ark:/85065/d7bc432p
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2022-12-03T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:33:33.232285