Identification

Title

Comparison of six lightning parameterizations in CAM5 and the impact on global atmospheric chemistry

Abstract

We present simulations performed with six lightning parameterizations implemented in the Community Atmosphere Model (CAM5). The amount of lightning-produced nitrogen oxides (LNOx) by the various schemes considered is estimated. We provide some insight on how the lightning NO injected in the atmosphere influences the global concentrations of key chemical species such as OH, HO2, H2O2, NOx, O-3, SO2, CO, and HNO3. The vertical global averaged densities of HO2, H2O2, CO, and SO2 are depleted due to lightning while those of NO, NO2, O-3, OH, and HNO3 increase. Our results indicate that the parameterizations based on the upward ice flux (ICEFLUX) exhibit the largest global and midlatitude spatial correlations (0.73 and 0.632 for ICEFLUX and 0.72 and 0.553 for cloud top height) with respect to satellite global flash rate observations. Five out of the six lightning schemes investigated exhibit larger LNOx per flash in the midlatitudes than in the tropics. In particular, it is found that the ICEFLUX midlatitude LNOx per flash exhibits the largest difference with respect to its predicted tropical LNOx per flash, in agreement with available observations. When using CAM5, the ICEFLUX lightning parameterization could be considered a reliable lightning scheme (within its intrinsic uncertainties) in terms of its geographical distribution. Both ICEFLUX and cloud top height results agree with the enhancements of NO2 and O-3 produced by lightning over tropical Atlantic and Africa and the weaker lightning background over the tropical Pacific reported by Martin et al. (2007) in the periods and locations (upper troposphere) where lightning is expected to dominate the trace gas observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7xg9v8p

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:11:49.588099

Metadata language

eng; USA