Identification

Title

East-west differences in F-region electron density at midlatitude: Evidence from the Far East region

Abstract

The global configuration of the geomagnetic field shows that the maximum east-west difference in geomagnetic declination of northern middle latitude lies in the US region (~32°), which produces the significant ionospheric east-west coast difference in terms of total electron content first revealed by Zhang et al. (2011). For verification, it is valuable to investigate this feature over the Far East area, which also shows significant geomagnetic declination east-west gradient but smaller (~15°) than that of the US. The current study provides evidence of the longitudinal change supporting the thermospheric zonal wind mechanism by examining the climatology of peak electron density (NmF2), electron density (Ne) of different altitudes in the Far East regions with a longitude separation of up to 40-60° based on ground ionosonde and space-based measurements. Although the east-west difference (Rew) over the Far East area displays a clear diurnal variation similar to the US feature, that is negative Rew (West Ne>East Ne) in the noon and positive at evening-night, the observational results reveal more differences including: (1) The noontime negative Rew is most pronounced in April-June while in the US during February-March. Thus, for the late spring and summer period negative Rew over the Far East region is more significant than that of the US. (2) The positive Rew at night is much less evident than in the US, especially without winter enhancement. (3) The magnitude of negative Rew tends to enhance toward solar maximum while in the US showing anticorrelation with the solar activity. The altitude distribution of pronounced negative difference (300-400km) moves upward as the solar flux increases and hence produces the different solar activity dependence at different altitude. The result in the paper is not simply a comparison corresponding to the US results but raises some new features that are worth further studying and improve our current understanding of ionospheric longitude difference at midlatitude.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ns0vr5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:20:39.676850

Metadata language

eng; USA