Identification

Title

Quantifying adiabatic motion in the outer radiation belt and ring current with invariant matching

Abstract

Adiabatic motion is a fundamental reversible process for geomagnetically trapped particle populations, including particles comprising the ring current and radiation belts. During adiabatic motion, a particle's trajectory in configuration space responds to sufficiently slow changes in the magnetospheric magnetic field. Previous research has highlighted expected patterns in adiabatic motion, such as radial motion or the D st effect. In this work, we introduce a method we call Invariant Matching for quantifying adiabatic motion between a pair of magnetospheres. This method can be applied to both simulation and semi-empirical magnetic field models, is computationally efficient, and in particular does not require tracing the particle trajectories. In this work, we use the Tsyganenko et al., Journal of Geophysical Research: Space Physics, 2005, 110 (TS05) magnetic field model, and present adiabatic motion between a storm commencement, the time of the storm's D st minimum, and a nominal recovery time. We also analyze adiabatic motion which occurs in response to enhancements of individual major current systems (including the ring current, Chapman-Ferraro current, Birkeland current, and tail current). Our methodology yields vector fields quantifying the displacement of mirror points throughout the magnetosphere, prepared in a way appropriate for application to both outer radiation belt and ring current populations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7rb78t4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-05-30T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:51.750289

Metadata language

eng; USA