Identification

Title

Predictability of hurricane storm surge: An ensemble forecasting approach using global atmospheric model data

Abstract

Providing storm surge risk information at multi-day lead times is critical for hurricane evacuation decisions, but predictability of storm surge inundation at these lead times is limited. This study develops a method to parameterize and adjust tropical cyclones derived from global atmospheric model data, for use in storm surge research and prediction. We implement the method to generate storm tide (surge + tide) ensemble forecasts for Hurricane Michael (2018) at five initialization times, using archived operational ECMWF ensemble forecasts and the dynamical storm surge model ADCIRC. The results elucidate the potential for extending hurricane storm surge prediction to several-day lead times, along with the challenges of predicting the details of storm surge inundation even 18 h before landfall. They also indicate that accurately predicting Hurricane Michael's rapid intensification was not needed to predict the storm surge risk. In addition, the analysis illustrates how this approach can help identify situationally and physically realistic scenarios that pose greater storm surge risk. From a practical perspective, the study suggests potential approaches for improving real-time probabilistic storm surge prediction. The method can also be useful for other applications of atmospheric model data in storm surge research, forecasting, and risk analysis, across weather and climate time scales.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7rr23gt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-05-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:56.056130

Metadata language

eng; USA