Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations
Solar radiation below ~100 nm produces photoelectrons, a substantial portion of the F region ionization, most of the E region ionization, and drives chemical reactions in the thermosphere. Unquantified uncertainties in thermospheric models exist because of uncertainties in solar irradiance models used to fill spectral and temporal gaps in solar irradiance observations. We investigate uncertainties in solar energy input to the thermosphere on solar rotation time scales using photoelectron observations from the FAST satellite. We compare observed and modeled photoelectron energy spectra using two photoelectron production codes driven by five different solar irradiance models. We observe about 1.7% of the ionizing solar irradiance power in the escaping photoelectron flux. Most of the code/model pairs used reproduce the average escaping photoelectron flux over a 109-day interval in late 2006. The code/model pairs we used do not completely reproduce the observed spectral and solar rotation variations in photoelectron power density. For the interval examined, 30% of the variability in photoelectron power density with equivalent wavelengths between 18 and 45 nm was not captured in the code/model pairs. For equivalent wavelengths below ~16 nm, most of the variability was missed. This result implies that thermospheric model runs based on the solar irradiance models we tested systematically underestimate the energy input from ionizing radiation on solar rotation time scales.
document
https://n2t.org/ark:/85065/d72n52wp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-05-18T00:00:00Z
Copyright 2012 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-15T21:35:03.941294