Scaling individual tree transpiration with thermal cameras reveals interspecies differences to drought vulnerability
<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(0, 0, 0);display:inline !important;float:none;font-family:"Open Sans", icomoon, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">Understanding tree transpiration variability is vital for assessing ecosystem water-use efficiency and forest health amid climate change, yet most landscape-level measurements do not differentiate individual trees. Using canopy temperature data from thermal cameras, we estimated the transpiration rates of individual trees at Harvard Forest and Niwot Ridge. PT-JPL model was used to derive latent heat flux from thermal images at the canopy-level, showing strong agreement with tower measurements (</span><em><i style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);box-sizing:border-box;color:rgb(0, 0, 0);font-family:"Open Sans", icomoon, sans-serif;font-size:16px;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">R</i></em><sup style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);box-sizing:border-box;color:rgb(0, 0, 0);font-family:"Open Sans", icomoon, sans-serif;font-size:12px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;line-height:0;orphans:2;position:relative;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;top:-0.5em;vertical-align:baseline;white-space:normal;widows:2;word-spacing:0px;">2</sup><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(0, 0, 0);display:inline !important;float:none;font-family:"Open Sans", icomoon, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;"> = 0.70–0.96 at Niwot, 0.59–0.78 at Harvard at half-hourly to monthly scales) and daily RMSE of 33.5 W/m</span><sup style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);box-sizing:border-box;color:rgb(0, 0, 0);font-family:"Open Sans", icomoon, sans-serif;font-size:12px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;line-height:0;orphans:2;position:relative;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;top:-0.5em;vertical-align:baseline;white-space:normal;widows:2;word-spacing:0px;">2</sup><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(0, 0, 0);display:inline !important;float:none;font-family:"Open Sans", icomoon, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;"> (Niwot) and 52.8 W/m</span><sup style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);box-sizing:border-box;color:rgb(0, 0, 0);font-family:"Open Sans", icomoon, sans-serif;font-size:12px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;line-height:0;orphans:2;position:relative;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;top:-0.5em;vertical-align:baseline;white-space:normal;widows:2;word-spacing:0px;">2</sup><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(0, 0, 0);display:inline !important;float:none;font-family:"Open Sans", icomoon, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;"> (Harvard). Tree-level analysis revealed species-specific responses to drought, with lodgepole pine exhibiting greater tolerance than Engelmann spruce at Niwot and red oak showing heightened resistance than red maple at Harvard. These findings show how ecophysiological differences between species result in varying responses to drought and demonstrate that these responses can be characterized by deriving transpiration from crown temperature measurements.</span></p>
document
https://n2t.net/ark:/85065/d70869mz
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-10-01T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T19:58:24.001215