Identification

Title

Improving environmental change research with systematic techniques for qualitative scenarios

Abstract

Scenarios are key tools in analyses of global environmental change. Often they consist of quantitative and qualitative components, where the qualitative aspects are expressed in narrative, or storyline, form. Fundamental challenges in scenario development and use include identifying a small set of compelling storylines that span a broad range of policy-relevant futures, documenting that the assumptions embodied in the storylines are internally consistent, and ensuring that the selected storylines are sufficiently comprehensive, that is, that descriptions of important kinds of future developments are not left out. The dominant approach to scenario design for environmental change research has been criticized for lacking sufficient means of ensuring that storylines are internally consistent. A consequence of this shortcoming could be an artificial constraint on the range of plausible futures considered. We demonstrate the application of a more systematic technique for the development of storylines called the cross-impact balance (CIB) method. We perform a case study on the scenarios published in the IPCC Special Report on Emissions Scenarios (SRES), which are widely used. CIB analysis scores scenarios in terms of internal consistency. It can also construct a very large number of scenarios consisting of combinations of assumptions about individual scenario elements and rank these combinations in terms of internal consistency. Using this method, we find that the four principal storylines employed in the SRES scenarios vary widely in internal consistency. One type of storyline involving highly carbon-intensive development is underrepresented in the SRES scenario set. We conclude that systematic techniques like CIB analysis hold promise for improving scenario development in global change research.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77d2vw6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 IOP Publishing Ltd.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:12:41.998250

Metadata language

eng; USA