Identification

Title

Convective impact on the global lower stratospheric water vapor budget

Abstract

Water vapor in the stratosphere is primarily controlled by temperatures in the tropical upper troposphere and lower stratosphere. However, the direct impact of deep convection on the global lower stratospheric water vapor budget is still an actively debated issue. Two complementary modeling approaches are used to investigate the convective impact in boreal winter and summer. Convective influence is diagnosed by tracing trajectories through convective cloud top altitude fields derived from global rainfall and brightness temperature data. Backward trajectory model simulations coupled with a detailed treatment of cloud microphysical processes indicate that convection moistens the global lower stratosphere by approximately 0.3 ppmv in boreal winter and summer 2010. The diurnal peak in convection is responsible for about half of the total convective moistening during winter and nearly all of the convective moistening during summer. Deep convective clouds overshooting the tropopause have relatively minor effect on global lower stratospheric water vapor. A forward trajectory model coupled with a simplified cloud module is used to estimate the relative magnitude of the interannual variability of the convective impact. Combining the results from the two models, we find that the convective impact on the global lower stratospheric water vapor during 2006-2016 is approximately 0.3 ppmv with year-to-year variations of up to 0.1 ppmv. An important mechanism of convective hydration of the lower stratosphere is via the detrainment of saturated air and ice into the tropical uppermost troposphere and the subsequent upward transport of some of these moist air parcels across relatively warm and subsaturated tropopause.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d73x8bmm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-03-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:20:08.773141

Metadata language

eng; USA