Identification

Title

Bridging the gap between global weather prediction and global storm‐resolving simulation: Introducing the GFDL 6.5‐km SHiELD

Abstract

We introduce a 6.5‐km version of the Geophysical Fluid Dynamics Laboratory (GFDL)'s System for High‐resolution prediction on Earth‐to‐Local Domains (SHiELD). This global model is designed to bridge the gap between global medium‐range weather prediction and global storm‐resolving simulation while remaining practical for real‐time forecast. The 6.5‐km SHiELD represents a significant advancement over GFDL's flagship global forecast system, the 13‐km SHiELD. This global model features a holistically‐developed scale‐aware suite of physical parameterizations, stepping into the formidable convective “gray zone” of resolutions below 10 km. Comparative analyses with the 13‐km SHiELD, conducted over a 3‐year hindcast period, highlight noteworthy improvements across global‐scale, regional‐scale, tropical cyclone (TC), and continental convection predictions. In particular, the 6.5‐km SHiELD excels in predicting considerably finer‐scale convective systems associated with large‐scale frontal systems and extratropical cyclones. The predictions of global temperature, wind, cloud, and precipitation are significantly improved in this global model. Regionally, over the contiguous United States and the Maritime Continent, substantial reductions in prediction biases of precipitation, cloud cover, and wind fields are also found. In the mesoscale realm, the model demonstrates prominent improvements in global TC intensity and continental convective precipitation prediction: biases are relieved, and skill is higher. These findings affirm the superiority of the 6.5‐km SHiELD compared to the current 13‐km SHiELD, which will advance weather prediction by successfully addressing both synoptic weather systems and specific storm‐scale phenomena in the same global model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d76q22kf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:56:38.968930

Metadata language

eng; USA