Identification

Title

A new method for ice-ice aggregation in the Adaptive Habit Model

Abstract

A novel methodology for modeling ice-ice aggregation is presented. This methodology combines a modified hydrodynamic collection algorithm with bulk aggregate characteristic information from an offline simulator that collects ice particles, namely, the Ice Particle and Aggregate Simulator, and has been implemented into the Adaptive Habit Microphysics scheme in the Weather Research and Forecasting Model. Aggregates, or snow, are formed via collection of cloud ice particles, where initial ice characteristics and the resulting geometry determine aggregate characteristics. Upon implementation, idealized squall-line simulations are performed to examine the new methodology in comparison with commonly used bulk microphysics schemes. It is found that the adaptive habit aggregation parameterization develops snow and reduces ice mass and number concentrations compared to other schemes. The development of aggregates through the new methodology cascades into other interesting effects, including enhancements in ice and snow growth, as well as homogeneous freezing. Further microphysical analyses reveal varying sensitivities, where snow processes are most sensitive to the new parameterization, followed by ice, then cloud, rain, and graupel processes. Further, the new scheme results in enhancements in surface precipitation due to the persistence of snow at lower altitudes. This persistence is a result of shape-dependent melting and sublimation, increasing the residence time. Moreover, these low-level enhancements are reflected in increases in radar reflectivity at the surface and its spatial distribution. Finally, the ability to predict snow shape and density allows for the simulation of polarimetric radar quantities, resulting in signature enhancements compared to schemes that do not consider spatial and temporal variations in snow shape and density.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70005gg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:24.253370

Metadata language

eng; USA