Identification

Title

Is AMOC more predictable than North Atlantic heat content?

Abstract

Predictability properties of the Atlantic meridional overturning circulation (AMOC) are measured and compared to those of the upper-500-m heat content in the North Atlantic based on control simulations from nine comprehensive coupled climate models. By estimating the rate at which perfect predictions from initially similar states diverge, the authors find the prediction range at which initialization loses its potential to have a positive impact on predictions. For the annual-mean AMOC, this range varies substantially from one model to another, but on average, it is about a decade. For eight of the models, this range is less than the corresponding range for heat content. For 5- and 10-yr averages, predictability is substantially greater than for annual means for both fields, but the enhancement is more for AMOC; indeed, for the averaged fields, AMOC is more predictable than heat content. Also, there are spatial patterns of AMOC that have especially high predictability. For the most predictable of these patterns, AMOC retains predictability for more than two decades in a typical model. These patterns are associated with heat content fluctuations that also have above-average predictability, which suggests that AMOC may have a positive influence on the predictability of heat content for these special structures.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71j9bqx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:22:19.169708

Metadata language

eng; USA