How does availability of meteorological forcing data impact physically based snowpack simulations?
Physically based models facilitate understanding of seasonal snow processes but require meteorological forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and longwave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often represented with empirical estimates. Research is needed to understand which forcings (after temperature and precipitation) would most benefit snow modeling through expanded observation or improved estimation techniques. Here, the impact of forcing data availability on snow model output is assessed with data-withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Distributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model (SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and snow surface temperature Tsurf diverged most often because of availability of longwave radiation, which is the least frequently measured forcing in cold regions in the western United States. Availability of longwave radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234 mm (57% of peak SWE), mean differences up to 6.2°C in Tsurf, and up to 32 days difference in snow disappearance timing. From a model data perspective, more common observations of longwave radiation at AWSs could benefit snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need consideration.
document
http://n2t.net/ark:/85065/d7np25wd
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-01-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:09:45.383256