Identification

Title

Seasonal variations in severe weather forecast skill in an experimental convection-allowing model

Abstract

Eight years of daily, experimental, deterministic, convection-allowing model (CAM) forecasts, produced by the National Severe Storms Laboratory, were evaluated to assess their ability at predicting severe weather hazards over a diverse collection of seasons, regions, and environments. To do so, forecasts of severe weather hazards were produced and verified as in previous studies using CAM output, namely by thresholding the updraft helicity (UH) field, smoothing the resulting binary field to create surrogate severe probability forecasts (SSPFs), and verifying the SSPFs against observed storm reports. SSPFs were most skillful during the spring and fall, with a relative minimum in skill observed during the summer. SSPF skill during the winter months was more variable than during other seasons, partly due to the limited sample size of events, but was often less than that during the warm season. The seasonal behavior of SSPF skill was partly driven by the relationship between the UH threshold and the likelihood of obtaining severe storm reports. Varying UH thresholds by season and region produced SSPFs that were more skillful than using a fixed UH threshold to identify severe convection. Accounting for this variability was most important during the cool season, when a lower UH threshold produced larger SSPF skill compared to warm-season events, and during the summer, when large differences in skill occurred within different parts of the continental United States (CONUS), depending on the choice of UH threshold. This relationship between UH threshold and SSPF skill is discussed within the larger scope of generating skillful CAM-based guidance for hazardous convective weather and verifying CAM predictions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d73b62tc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:22:57.156717

Metadata language

eng; USA