Regional climate modeling of vegetation feedbacks on the Asian–Australian monsoon systems
This study explores the hypothesis that subtropical and tropical monsoon regions exhibit unique responses to vegetation feedbacks. Using the Community Climate System Model (CCSM), M. Notaro et al. concluded that reduced vegetation cover led to an earlier subtropical Chinese monsoon and a delayed, weaker tropical Australian monsoon, yet significant climate and leaf area index (LAI) biases obfuscated the hypothesis's reliability. To address these concerns, the Regional Climate Model, version 4 (RegCM4), likewise coupled to the Community Land Model but with ''observed'' LAI boundary conditions, is applied across China and Australia. The model matches the observed dominance of crops, grass, and evergreen trees in southern China and grass and shrubs in northern Australia. The optimal model configuration is determined and applied in control runs for 1960-2013. Monsoon region LAI is modified in a RegCM4 ensemble, aimed at contrasting vegetation feedbacks between tropical and subtropical regions. Greater LAI supports reductions in albedo, temperature, wind speed, boundary layer height, ascending motion, and midlevel clouds and increases in diurnal temperature range (DTR), wind stress, evapotranspiration (ET), specific humidity, and low clouds. In response to greater LAI, rainfall is enhanced during Australia's pre-to-midmonsoon season but not for China. Modified LAI leads to dramatic changes in the temporal distribution and intensity of Australian rain events. Heterogeneous responses to biophysical feedbacks include amplified impacts (e.g., increased ET and DTR) across China's croplands and Australia's shrublands. Inconsistencies between China's monsoonal responses in the present RegCM4 study and prior CCSM study of M. Notaro et al. are attributed to CCSM's excessive forest cover and LAI, exaggerated roughness mechanism, and deficient ET response.
document
http://n2t.net/ark:/85065/d7q52rf2
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-03-01T00:00:00Z
Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:12:27.611427